Pesticide Monitoring on Soccer Fields
Via Wipe and Urine Samples

Robyn Gilden, PhD, RN1; Marc Plisko, BS2; Kathleen Hiteshew, MS2

1University of Maryland School of Nursing; 2Environmental Profiles, Inc

Background
- Pesticides linked to serious health outcomes
- Neurologic, reproductive and endocrine, immunologic, developmental impairment, and certain types of cancers.
- Negative health outcomes occur from childhood to adulthood and beyond
- Prior research demonstrated that pesticides are applied to children's athletic fields, question remains: does application of pesticides to the fields lead to pesticide exposure of children who use the fields?

Purpose
- Pilot study: assessed exposure of children to pesticides applied to playing fields.
- Shoe wipes and urine samples before and after soccer field use.
- Children were the focus of sampling:
 - still developing nervous and immune systems;
 - cover more of the total field than coaches and referees;
 - exposed on a regular basis for many years.
- The chemical of concern: Horsepower, made up of MCPA, triclopyr, dicamba. May cause Non-Hodgkin’s lymphoma, hypothyroidism and birth defects.

Limitations
- Sample size
- Non-detect due to monitoring in an untreated area (herbicide spot treatment only)

Funding
University of MD Biology and Behavior Across the Lifespan Research Center
Department of Family and Community Health Designated Research Initiative Funds.

Results

Subjects
- 25 volunteers total (4 different practice nights)
- Sample: Monday night (n=6)
- 3 subjects from field 3
- 3 subjects from field 4

Wipes
- Preuse sample n = 12
- Postuse sample n = 12
- Field blank n = 2

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Preuse</th>
<th>Postuse</th>
<th>LOEL/NOEL*</th>
<th>LOQ</th>
<th>Based on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wipes (herbicides)</td>
<td><0.06+ 216 μg/sample</td>
<td>15.2 mg/h</td>
<td>Triclopyr chr CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine (dicamba)</td>
<td><1+0.36 μg/mL</td>
<td>19.0 mg/h</td>
<td>Dicamba chr CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine (triclopyr)</td>
<td><0.02+0.072 μg/mL</td>
<td>15.2 mg/h</td>
<td>Triclopyr chr CA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Urine
- Preuse sample n = 6
- Postuse sample n = 6

Methods
- N=6 (based on statistical considerations)
- Sampling date: September 15, 2014 following Horsepower application.
- 3 subjects per fields had cleats cleaned, dried, and wiped.
- Start and stop time of field use was noted, and shoes were wiped again.
- Urine samples: collected pre-use; post-use next morning with first void

Data Analysis

Wipes
- Lab facility: ALS Environmental in Salt Lake City, UT.
- Analyzed with modified form of NIOSH Method 5601, Organonitrogen Pesticides via high performance liquid chromatography with an ultraviolet detector (HPLC UV).
- LOD= 0.6 μg/sample - 4.8 μg/sample, precision: 0.055-0.079.

Urine
- Lab facility: NMS Labs in Willow Grove, PA.
- LOD: dicamba - 0.1 μg/mL, triclopyr - 0.02 μg/mL.
- Creatinine measured to allow creatinine clearance calculation.

Conclusions and Further Research
- Validated recruitment process
- Validated sample collection process: shoe wipes and urine
- Can translate to other settings and populations
- Values were below level of detection, possibly due to spot application of the herbicide, need to repeat when can observe application process, to determine true negative.

Acknowledgements
- Players, Parents and Coaches of Central Carroll Rec Soccer League
- Rob Freter, Central Carroll Soccer Association
- Lawn Doctor Landscape Management Company