Vertical ground reaction force magnitudes and rates not positively correlated with prospective running injury

1Kiernan, D., 1,2Shim, J. K., 1Miller, R. H.
1University of Maryland, College Park, MD, USA 2Kyung Hee University, Yong-in, South Korea

Research Question
Do vertical ground reaction forces (VGRF) measured at baseline predict prospective injury development?

• Hypothesis: VGRF theorized to cause injury; therefore, baseline VGRF should positively correlate with prospective injury

Methods
Recruitment: n = 44, 22 male, age 30±10
Baseline biomechanics: 10 left and 10 right stances used to calculate VGRF magnitude and rate

Prospective injury: 26 weekly internet surveys
• Number of injuries
• Location of each injury
• Pain caused by each injury
• Days of running missed due to each injury

Analyses: Pearson correlations between ipsilateral VGRF (magnitude, rate, PCs) and injury (number, pain, days missed)

Results
Traditional metrics show no positive VGRF-injury correlations
• Rate negatively correlated with number of \(r = -0.31, p < 0.01 \), and pain caused by \(r = -0.26, p = 0.01 \), injuries

4 PCs accounted for >90% of VGRF variance
PC2 positively correlated with number of \(r = 0.31, p < 0.01 \), and pain caused by \(r = 0.25, p < 0.05 \), injuries
• High PC scores \(\rightarrow \) low magnitudes and rates
• Corroborates negative rate-injury correlation

Table 1: Correlations and coefficients of determination – \(r^2 \) – between bilateral VGRF (magnitude, rate, PCs) and injuries (number, pain, days missed).

<table>
<thead>
<tr>
<th></th>
<th>Number</th>
<th>Pain</th>
<th>Days Missed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnitude</td>
<td>-0.19</td>
<td>-0.16</td>
<td>-0.11</td>
</tr>
<tr>
<td>Rate</td>
<td>-0.31</td>
<td>-0.26</td>
<td>-0.12</td>
</tr>
<tr>
<td>PC1</td>
<td>-0.12</td>
<td>-0.04</td>
<td>-0.07</td>
</tr>
<tr>
<td>PC2</td>
<td>0.31</td>
<td>0.25</td>
<td>0.14</td>
</tr>
<tr>
<td>PC3</td>
<td>-0.06</td>
<td>-0.04</td>
<td>-0.06</td>
</tr>
<tr>
<td>PC4</td>
<td>0.06</td>
<td>0.02</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Contrary to theory, VGRF magnitude and rate did not predict injury
• In fact, rate negatively correlated with injury
• Consistent with earlier prospective work

PCM results suggest method useful for objectively identifying biomechanical waveform features that may predict injury
VGRF may, however, be insufficient to identify at-risk runners

Future work will examine efficacy of other predictors
• Internal loading of injury-prone structures is the most direct cause of injury; therefore, modelled internal loads should predict injury

Acknowledgements
Support for this research was provided by the University of Maryland Kinesiology Graduate Research Initiative Fund to Dovin Kiernan.
Dovin Kiernan was also supported by an NSERC CGS-M scholarship

Contact
Dovin Kiernan
Neuromechanics Research Core
dkiernan@umd.edu
http://sp.h.umd.edu/neuromechanics

References